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Previous experimental and numerical work indicates that  an initially symmetric 
deep-water wave pulse of uniform frequency and moderately small steepness evolves 
in an asymmetric manner and eventually separates into distinct wave groups, owing 
to higher-order modulation effects, not accounted for by the nonlinear Schrodinger , 

equation (NLS). Here perturbation methods are used to provide analytical 
confirmation of this group splitting on the basis of the more accurate envelope 
equation of Dysthe (1979). It is demonstrated that an initially symmetric multi- 
soliton wave envelope, consisting of N bound NLS solitons, ultimately breaks up into 
N separate groups ; a procedure is devised for determining the relative speed changes 
of the individual groups. The case of a bi-soliton (N = 2) is discussed in detail, and 
the analytical predictions are compared to  numerical results. 

1. Introduction 
It was first pointed out by Feir (1967), and later confirmed by the more extensive 

experimental study of Su (1982), that an initially symmetric deep-water wavepacket 
of uniform frequency and moderate steepness evolves in an  asymmetric manner and 
ultimately breaks up into separate groups. This asymmetric development is 
accelerated as the wave steepness is increased, and cannot be accounted for by the 
familiar nonlinear Schrodinger equation (NLS) : according to the NLS, an initially 
symmetric wavepacket remains symmetric ; moreover, if the packet has uniform 
frequency initially, the long-time asymptotic form of the envelope consists, in 
general, of a finite number of solitons that are bound together and undergo multi- 
period recurrence (Zakharov & Shabat 1972). In  the further development of the 
theory, Lo & Mei (1985), on the basis of detailed comparisons of numerical solutions 
with experiments, concluded that the observed asymmetric evolution of finite- 
amplitude wavepackets can be explained theoretically using a more accurate 
envelope equation, derived earlier by Dysthe (1979)) which takes into account 
higher-order modulation effects. The numerical results of Lo & Mei (1985) also clearly 
indicate that wave-group separation is caused by a relative shift in the carrier 
frequency, and hence in the group velocity, of each group, in agreement with the 
experiments of Feir (1967) and Su (1982). 

In a recent paper Akylas (1989, hereinafter referred to as I), following a somewhat 
different theoretical approach, studied the long-time evolution of a solitary wave 
group of the NLS by perturbation methods, making use of the fact that the higher- 
order terms in the Dysthe equation are relatively small. According to the 
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perturbation theory, an NLS soliton eventually transforms to  a wave group which 
has lower peak amplitude and moves faster than the original pulse owing to a 
downshift in its carrier frequency, in quantitative agreement with numerical results. 
These findings are consistent with previous work in so far as they suggest that, for 
general initial disturbances with more than one solitary group present, as in the 
experiments of Feir (1967) and Su (1982), group splitting is caused by a relative shift 
in the carrier frequency of each group. On the other hand, it is clear that the theory 
presented in I is not directly applicable to these experimental observations because 
it does not take into account interactions between individual wave groups in 
determining the corresponding frequency shifts. 

To remedy this difficulty, the perturbation approach of I is extended in the present 
work to study higher-order modulation effects on multi-soliton disturbances. I n  
particular, the long-time evolution of an initially symmetric wave envelope of 
uniform frequency, consisting of N bound NLS solitons, is investigated, and a 
procedure is devised for calculating the corresponding amplitude changes, frequency 
shifts, and speed changes. Detailed results are presented for a bi-soliton envelope 
(N = 2), which reveal that the interaction between the two groups has an appreciable 
effect on the frequency shifts. 

I n  the following analysis, it proves most convenient to discuss the long-time 
behaviour of wave envelopes which initially are multi-soliton bound states because, 
according to the NLS, these envelopes undergo multi-period recurrence in a reference 
frame moving with the group velocity. However, it is worth emphasizing that, from 
the viewpoint of an asymptotic theory, this choice of initial conditions does not 
amount to loss of generality: solution of the NLS by the inverse scattering method 
(Zakharov & Shabat 1972) shows that, in general, a localized wavepacket with 
initially uniform frequency will evolve to  a bound soliton state after a long time, 
when higher-order modulation effects are expected to come into play; thus, using a 
multi-soliton bound state as initial condition for the Dysthe equation provides the 
appropriate asymptotic matching condition for describing the long-time evolution of 
a general localized wavepacket with initially uniform frequency. The validity of the 
perturbation theory is confirmed in Q 4, by comparing the analytical predictions for 
a bi-soliton to numerical results. 

2. Formulation 
As explained in I, the equation derived by Dysthe (1979) for the envelope A(& 7)  

of a two-dimensional wavepacket of small steepness E (0 < E Q l),  propagating on 
deep water ( -  00 c x: c CO, - 00 < y c 0) ,  takes the dimensionless form 

(1) A,+ A,+ iA2A* + 8eAA*A,+ 2idX{AA*}, = 0 

in a frame of reference moving with the group velocity, 

[ = 2 X - T ,  r=Ex, 

where X = EX, T = st are the ‘slow’ space and time variables associated with the 
evolution of the envelope. Here X stands for the Hilbert transform 

the integral being interpreted as a principal value, and * denotes the complex 
conjugate. Setting E = 0 in ( l ) ,  one obtains the NLS. 
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In the experiments of Feir (1967) and Su (1982), a wavemaker was used to generate 
symmetric wavepackets of constant frequency, and the subsequent wave evolution 
was monitored by recording free-surface displacements at  certain downstream 
locations. So, for the theoretical formulation to be consistent with these experiments, 
the wave envelope is prescribed at  g = 0, 

(2) 

with A ,  real and symmetric about < =  0, and the evolution of the envelope 
downstream (g > 0) is to be determined by solving the Dysthe equation ( 1 )  subject 
to the 'initial' condition (2). Our interest centres on the asymptotic form of the wave 
envelope far from the wavemaker (g % l),  where higher-order terms in ( 1 )  are 
expected to become important in the limit s+O. For this purpose, A ,  is taken to 
consist of a finite number, N say, of NLS solitons that are bound together ; as already 
remarked in 3 1,  this choice also ensures matching with the wave disturbance near the 
wavemaker. 

Multi-soliton envelopes are well-known solutions of the NLS (Zakharov & Shabat 
1972) having the general form 

A = A,(<) (7 = 0 ,  - 00 < ( <El), 

A = A((, g) e'+N, (3) 

where 

with 

and 

(4) 

The @,(j = 1 , .  . . , N) in (4) are determined by solving the linear algebraic system 

N 

E M j l  q+@, = A, (j = 1, ... , N ) ,  
1-1 

where 
N > * 2  

Each N-soliton solution depends on 4N real parameters : K, are related to the soliton 
amplitudes a, through 

pj specify the soliton speeds c,, 

c, = -2p, (j = 1, ... , N ) ,  (8b) 

while the magnitudes and phases of the complex constants A,( j  = 1, ... ,N)  are 
related, respectively, to shifts in the positions and phases of the solitons. In 
particular, for a bound soliton state, in view of ( 8 b ) ,  we set 

(9) p j = O  ( j= 1, ..., N), 

so that the solitons do not separate and remain stationary; in addition, the 
parameters A, are taken to be real and such that the envelope is symmetric about 
6 = 0, in accordance with the conditions imposed on A ,  in (2). With this choice of 
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parameters, a bound N-soliton solution of the NLS depends on N parameters, the 
K j  (j = 1, ... , N ) ,  say, and can be written as 

where 
A ( 5 , v )  = U,(e37)exp(-i+47), (10) 

8 .  3 = ~~5 ( j  = 1 ,..., N ) ;  ri = Q,r, Q, = i(uk-uj”) (j = 1 ,..., N - 1 ) .  (11) 

It follows from (3)-(7) that U, is a 2n-periodic function in r i ( j  = 1, ... , N - 1 ) .  
Moreover, in addition to the symmetry 

U,C - 0, T )  = ~ , ( 0 , 7 ) ,  (12) 

Rc{U,(B,r)) = Re{U,(B, - T ) } ,  Im{U,(B,t)} = -Im{U,(B, - T ) } .  (13) 

the real and imaginary parts of U, also obey 

For N =  1, U, is steady and, making use of (3)-(9), (10) reduces to the stationary 
isolated soliton, considered in I : 

(14) A = a, sech 8, exp ( - i+ui 7) ; 

for N = 2, U, is 2n-periodic in r1 and a bi-soliton envelope is obtained (Peregrine 
1983) : 

where 

2a,--a, . 

Da,+a, 
A = - - -  (a ,  elr, S, + a,  S,) exp ( - i$&), 

D =  1+ (8, S, cos 7, -R, R,) 

with the shorthand notation Sls2 = sech 8,,,, R,,, = tanh8,,,. 

3. Perturbation theory 
The fact that an NLS multi-soliton bound state of the form (10) is periodic in 7 and 

localized in 5 suggests using a multiple-scales perturbation procedure to describe the 
evolution of the wave envelope far downstream (7 9 1). For E 4 1, it is anticipated 
that higher-order envelope modulations will have a small effect over a distance of a 
few periods, and, thus, it is possible to set up an asymptotic theory, analogous to the 
one developed by Ablowitz & Benney (1970) for multiply periodic nonlinear 
wavetrains. 

The key step is to  treat 7,  7i ( j  = 1 , .  . . , N -  1) as independent variables so that 

and write 

where U is 2n-periodic in 7 and localized in 6. Substituting (16) into ( l ) ,  it is found 
that U satisfies 

7 ; E )  = Wi, 7,z ; €1 exp (-+&7), (16) 

V,+D, U-tia; U + i ~ 5 + i u 2 U * + 8 ~ U U * ~ + 2 i ~ U ~ { U U * } E  = 0, (17)  

and, in view of (lo), the initial condition (2) becomes 

u = U , ( 5 , 7 ; K )  (7 = 0). 

After the above changes of variables are made, the general strategy for solving (17) 
subject to (18) perturbatively is similar to that followed in I for a single soliton 
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(N = l ) ,  although the details are technically more involved for N 3 2 because V, 
is periodic in 7 rather than steady. To begin with, U is expanded in a power series 
in e: 

u = q J E ,  7 ;  K ) + E Q ( S ,  797) +e"(S, 7,7) + ... (19) 

whose leading-order term is given by (18), the known N-soliton bound state of the 
NLS. Proceeding to O(e) ,  U, satisfies a linear problem consisting of an inhomogeneous 
equation subject to the quiescent initial condition Ul = 0 a t  7 = 0. Now, as in I, the 
solution of this initial-value problem that is localized in 5 and 2x-periodic in T is 
expected to  exhibit secular behaviour as 7 -+a ; interpreting these non-uniformities 
in the expansion (19) appropriately will yield the correct asymptotic form of the 
wave envelope far downstream. 

To be more specific, after taking Laplace transforms in 7, 

U - - Qe'vds, 
- 2x1 I- 

the O ( E )  problem for q, in vector form, reads 

1 a U ;  + LU; = ;z, 

where Z =  -81U,12QV,v,,-2X{1U,12}t V,. 

Here 0, L are 2 x 2 matrix operators with elements 

Q 11 - - Q,*, = -i, Q I 2  = Q21 = 0, 

L,, = L,*, = -iD,+-+21U,12-$z&, 
a 2  

3% 
L,, = L& = q, 

operating on two-dimensional column vector functions with entries given by the 
function itself and its complex conjugate. 

It is important to note that L is a self-adjoint operator, and any vector functions 
u,  u that  are 2x-periodic in 7 and localized in 5 satisfy 

(u,  Lv) = ( v ,  Lu), (22) 

where the inner product (u,  v )  is defined as 

(u, V )  = r d 7 J y m d E ( ~ ~ * + ~ * ~ ) .  

Furthermore, if u is also a homogeneous solution of L, then, by the standard 
orthogonality argument, it  follows from (22) that, for the inhomogeneous problem 

Lv = r 

to have a non-secular solution (i.e. 2x-periodic in 7 and localized in 0, it is necessary 
that 

In particular, 2N independent, non-secular, homogeneous solutions of L, u, 
(j = 1,. . . , UV) can be readily found in terms of V,(B,  7) : 

( u , r )  = 0. (23) 

(j = 1, ... J); 24, = - ( j = N + l ,  ...,UV- 1); u Z N = Q U , ,  (24) a V, u -- , - ae, aT,-N 
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and, making use of the symmetries of U, noted earlier in (12) and (13), it is easy to 
show that Z ,  defined in (21), is orthogonal to  all these homogeneous solutions: 

(U,,Z) = 0 (j = 1,  ... ,W).  (25) 

(26 ) 

Moreover, in a similar way, it can be shown that 

(u,, Qu,) = 0 (j, k = 1 ,  ... , 2 N ) .  

Now, returning to the inhomogeneous problem (20), we need to examine the 
asymptotic behaviour of V, for large 9 in order to identify possible secular terms 
which would cause the expansion (19) to  become non-uniform. To this end, as 
explained in I, is expanded in powers of s as follows: 

where u, are the well-behaved homogeneous solutions of L defined in (24), and 
C,(j = 1 , .  . . , W )  are as yet undetermined constants. Substituting (27) into (20), it is 
found that p-l satisfies 

2N 

,=1 
Lp-, = - C Cj Qu,+Z. 

Note that, in view of (25) and (26), the right-hand side of this inhomogeneous 
equation is orthogonal to  all u,(j = 1,  ... ,UV) and, therefore, according to the 
solvability condition (23), there exists a non-secular solution, 

P-1 =A59 r )+g(&  r ) ,  (28) 

say, where 

Equation (296) does not seem to be amenable to  analytical solution in general. On 
the other hand, it is possible to  solve (29a) explicitly by considering the particular 
solutions w,(j = 1 ,  . . . , UV) : 

+ ?guj (j = N +  1,  . . . , 2N- 1) ; ,..., N ) ;  w -- 
a2 w , = %  av ,  ( j = 1  

- ' 3 - N  

where A has already been defined in (4)-(7) and the derivatives with respect to 
the parameters p, are evaluated at p, = 0 (j = 1 , .  . . , N ) .  It can be readily verified 
that the wj satisfy the inhomogeneous problems 

LW,=~K,QU,,, (j = 1 ,  ..., A'-l), (31 a )  
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So f is posed as a linear combination of the wj, 

and, upon substitution into (29a), using (31), the constants B, are related to C,: 

( j = N + l ,  . . . , 2 N ) .  (33) 

Proceeding to  O(1) in the expansion (27), taking into account (28) and (32), i t  is 
found that po satisfies 

2N 

LP, = - Q g - C B , Q w l ,  
1-1 

and for this inhomogeneous equation to have a non-secular solution, the 
orthogonality condition (23) should hold for all u j :  

2N 

CB,<uj,QwJ =-<uj,Qg) (j = 1,-.-,m). (34) 
1-1 

This is a linear system of Walgebraic equations for B,(j = 1,  . . . , UV), and when these 
coefficients are found, the unknown constants C,(j = 1 , .  . . , UV) follow directly from 
(33). 

The algebraic system (34) can be further simplified by making use of the symmetry 
property (12): according to (24), the first N homogeneous solutions, ul(j  = 1, ... , N ) ,  
are odd functions of 6 whereas the rest, ul( j  = N +  1,  ... , UV), are even. So, from (31), 
i t  is clear that  the 2N functions w1 can be normalized, by adding appropriate linear 
combinations of homogeneous solutions, so that 'wj(j = 1,  ... . N )  are even and 
w,(j = N +  1,  ... , UV) are odd in 6. As a result of these symmetries, the equation 
set (34) reduces to two uncoupled systems of N equations in N unknowns : 

N 

C B~+N(u~ ,  Qw,+,) = - <uj, Qg") (j = 1,  9 N ) ,  (35a) 

(35b) 

1-1 

N 

B~(u , ,  Qw,) = - (u,, Qge) (j = N +  1 , .  .. ,m), 

Lge=-2&'{I&12}s&, Lgo =-8(U,(2Q&E, (3% b) 

2-1 

where, in view of (21) and (29b), 

ge,go being even and odd in 6,  respectively. 
Having determined the constants Cj( j  = 1, ... , 2 N )  in (27), the leading behaviour 

of as s + 0 is now known. Following then the same procedure as in I, inverting this 
Laplace transform and combining (19), (24), (28), and (32), the asyihptotic form, 
correct to O(c), of U for large 9 is obtained: 

Clearly, the terms proportional to 9 in (37) become unbounded as ?#+a, and, as 
anticipated, the straightforward expansion (19) of the wave envelope breaks down 
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far from the wavemaker. To interpret these non-uniformities, one may view (19) as 
an inner expansion, valid for 7 << l/s, and match (37) ,  the outer limit of this inner 
expansion, to  a suitable outer expansion, valid for ST = O(1). This formal approach 
was discussed in detail in I for a single soliton. However, a simpler procedure 
is to note that the secular terms in (37)  correspond to a Taylor expansion of 
q(O,r)exp(-i$&q) for 

B j + B j + S C j ? j  (j= 1,  ..., N ) ;  T j + T j + & j + N ? j  (j = 1, ..., N - 1 ) ;  a N + a , + & p .  ‘ 2 ,  

a N  

Hence, taking into consideration (5 ) ,  (37)  can be identified as a ‘naive’ expansion of 
a wave envelope having N solitary groups, but with parameters slightly shifted from 
their original values : 

where 
pj = SAP,, a,+ai+sAaj, (38a)  

(j = 1,  ... , N -  1 ) ;  A U N  = %. (38b)  Ap  - A  C (j= 1, ..., N ) ;  Aa, = ‘ 2 ,  - ‘ j+N ’ - 2Kj a, a N  

These shifts correspond to  frequency and amplitude changes respectively. Also, 
according to ( S b ) ,  the frequency shifts result in speed changes, 

cl 
U 

cg = SAC,, Ac, = -2Ap, = -2 
K5 

(j = 1 ,... , N ) .  (39)  

Therefore, in general, the N groups are expected to separate far from the wavemaker, 
€7 = 0(1), in agreement with the previous experimental and numerical work cited in 
$1.  Furthermore, (33)  and (35)-(38) imply that, at least to leading order in S ,  the 
speed changes (39) depend on envelope modulations only, and are not affected by the 
wave-induced mean flow. 

As discussed in I, for N = 1, the speed change of an isolated envelope soliton of the 
form (14) with peak amplitude a can be calculated explicitly using the above 
asymptotic theory. The non-secular homogeneous solutions (24) and the particular 
solutions (30)  are given by 

u1 = -aRS, u2 = -iaS; w1 = -a&S+ d 2 S ,  w2 = i tas ,  

where R = tanhe, S = sech0 with 0 = KE. The solution of (36b)  can be found 
analytically in this case, 

go = i2t a2 SR, 
and from (35a)  it follows that 

therefore, using (33)  and ( 3 8 ) ,  (39) ,  it  is concluded that the group speed increases 
owing to a frequency downshift : 

Ap = -$az, AC = s2. (40) 
On the other hand, for N 2 2, one has to resort to  numerical solution of the 
inhomogeneous problem (36b) ,  in order to determine the constants B,(j = N +  I ,  ... , 
2 N )  from (35a),  and thereby obtain the speed changes of the N groups; the task 
becomes tedious as N increases. The case of a bi-soliton envelope (N = 2) is discussed 
below. 
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4. Bi-soliton envelope 
The symmetric bi-soliton envelope (15) includes two solitons with peak amplitudes 

a,, a2 (a ,  < a2, say) that are bound together and undergo recurrence with the period 

41r 
ai-a:‘ 

In  the limit that  one of these solitons has relatively small amplitude (a, g 1, a2 = 
O( l)), there is little interaction between the two groups, the bi-soliton approaches an 
isolated NLS soliton, and one can use (40) to  estimate the speed change of the main 
group ; the speed of the smaller group is expected to remain essentially unchanged. 
However, if the soliton amplitudes are comparable, the interaction between the two 
groups is appreciable, and it is of interest to know how the corresponding speed 
changes are modified. To this end, as already remarked, i t  is necessary to  solve the 
inhomogeneous problem (36 b )  numerically. 

Since the solution of (36b), go(( , i - )  with i- = ?j(ai-ai)q, is odd in (, we need only 
consider the region ( > 0. Moreover, the real and imaginary parts of go are taken to 
be, respectively, odd and even functions of 7; taking into account the fact that go is 
2lr-periodic in 7 ,  one then has 

Re { g o ( ( ,  i- = 0)) = 0, Re { g o ( ( ,  i- = n)} = 0, (42a, b )  

and it  suffices to  solve in the interval 0 < i- < n. This normalization is consistent with 
the parity of the right-hand side of (36b) and it also specifies g o ( ( ,  7) uniquely in view 
of the symmetries of the regular homogeneous solutions (24) following from (12) and 

To compute go((, i-), we use a discrete-Green-function technique : after truncating 
(13). 

the domain ( > 0 a t  a suitably large value of ( = (,, say, we write 

M 

g 0 ( t , , 7 )  = g”,(E,,i-)+ c Gkg;(6m37) (m = L.. .  J f L  (43) 
k-1 

where (, are M equally spaced grid points in 0 < ( < 6, and Gk (k = 1 , .  . . , M )  are 
real constants to be determined. Here gO, is the solution of the problem 

LgO, = -SlV,12 QQ, with SO,((, i- = 0) = 0, 

while the influence functions g;  satisfy 

Lg; = 0 with g;((,,  i- = 0) = id,, (j, k = 1, ... , M ) ,  

where S,, denotes the Kronecker delta. These initial-value problems are readily 
solved numerically in 0 < i- < n: through a standard marching procedure using a 
Crank-Nicolson scheme. Note that go,  as posed in (43), satisfies (42a) automatically, 
and, imposing (42b), a linear algebraic system for the constants G,  is obtained: 

M c G,Re{gO,((,,~=n)}=-Re{gO,((,,i-=lr)} ( m =  1, ..., M ) .  
k-1 

Thus, after solving this system, go is determined at the grid points from (43). 
To find the speed changes of the two groups of a bi-soliton, it remains to  solve the 

2 x 2 linear system (35a) for the constants B,, B,. For this purpose, the homogeneous 
solutions u,, ... , u4, defined in (24), are readily obtained from (15), and, using (30), the 
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ACI A% 

B a, a, Asymptotic Numerical Asymptotic Numerical 

1.8 0.333 1.444 1.5 1.6 5.3 5.0 
2.0 0.5 1.5 2.7 2.5 5.4 5.0 
2.2 0.636 1.545 3.8 3.2 5.3 5.5 
2.4 0.75 1.583 4.8 4.0 5.2 5.0 

TABLE 1 .  Speed changes of the groups resulting from initial condition (45) for various values of the 
parameter u in the range a < cr < 1;  the numerical results were obtained using E = 0.1 

required particular solutions w3, w4, consistent with the normalization 
earlier, are found to  be 

.42/2 alaz  w, = -1- (R, S, + ei7 R, S,) + (u,, 
D (a1+a2I2 

w4 = -W3-(U4, 

with the same notation as in (15). So, after computing the coefficients of the system 
(35a) by numerical integration, the constants B,, B, are determined by solving this 
system, and the desired frequency shifts and speed changes follow them (33), (38), 
and (39). 

The perturbation theory is now used to find the speed changes of the groups 
resulting from some typical initially symmetric wavepackets. We choose to discuss 
initial wave envelopes having the form 

(45) 
c A = sech- (7 = 0), 
0. 

where cr is a parameter that  controls the width of the packet. These bell-shaped 
envelopes are qualitatively similar to those investigated experimentally by Feir 
(1967). In  addition, for the class of initial envelopes (45), the inverse-scattering 
solution of the NLS can be found analytically (Satsuma & Yajima 1974), so that the 
soliton amplitudes of the bound state that obtains for 7 9 1 are known in closed 
form : 

2 
a,-,+, =-(a-j+$) ( j= 1 ,..., N ) ,  (46) cr 

where N - $  < CT < N + $  for N bound solitons to be present; in particular, for a bi- 
soliton, N = 2 and cr has to lie in the range t < cr < g. The speed changes, predicted 
by the perturbation theory, of the two groups that emerge for various values of cr in 
this range are listed in table 1,  together with estimates of these speed changes 
obtained from fully numerical solutions of the Dysthe equation ( 1 )  for wave 
steepness c = 0.1. In  implementing the perturbation procedure, described above, 
the solution of (36b), g " ( ( , ~ ) ,  was computed with a resolution of 100 grid points in 
0 < ( < 5, = 15 and 50 grid points in 0 < T < n. The numerical results were checked 
by verifying that the numerical solution of the inhomogeneous problem (31c) for 
j = 3, which is of the same form as (36b), agreed with the known analytical solution 
(44a). On the other hand, the Dysthe equation was solved numerically using a semi- 
implicit Crank-Nicolson scheme rather than the Fourier method of Lo & Mei (1985) ; 
as was also noted previously by Lo (1986), the spectral technique had difficulty 
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FIGURE 1. Evolution of initial envelope (45) for r~ = 2 as obtained from numerical solution of 

the Dysthe equation with E = 0.1. 

handling the small-amplitude dispersive waves that are radiated by initial conditions 
of the form (45) ahead and behind the main disturbance. Figure 1 shows the 
amplitude of the wave envelope, computed for u = 2 and 8 = 0.1, a t  several locations 
downstream from the wavemaker where the group splitting has become apparent. 

The results in table 1 indicate that the speed changes of both groups are positive 
and, consequently, their carrier frequencies are downshifted. The group with the 
larger amplitude is faster, but as u is increased and, according to (46), the difference 
in the amplitudes of the two groups becomes smaller, the corresponding speed 
changes approach each other so that it takes longer for the groups t o  separate. This 
is consistent with the experimental observations of Feir (1967) and Su (1982), who 
noted that the group with the highest amplitude clearly separated from the rest of 
the disturbance. Also, it is noteworthy that the interaction between the two groups 
plays an important part in determining the appropriate group-speed changes, 
especially that of the lower-amplitude group: using (40), which was derived for an 
isolated soliton, to estimate the speed changes of the two bound solitons with 
amplitudes given by (46) overpredicts the speed change of the larger group by about 
20 YO ; on the other hand, (40) grossly underpredicts the speed change of the lower- 
amplitude group. 

The agreement between the predictions of the perturbation theory for the group- 
speed changes and the numerical results, listed in table 1 ,  is quite reasonable, given 
that the value of 8 = 0.1 is only moderately small - this was a typical value of wave 
steepness in the experiments and, for this reason, was also used in solving the Dysthe 
equation numerically. In comparing the asymptotic with the numerical results, i t  
should be kept in mind that the perturbation theory implicitly assumes that the 
recurrence period (41) of the bi-soliton is small compared with the distance over 
which higher-order effects become important, 7 = O(l/s) .  (In particular, the theory 
is expected to break down as the two soliton peak amplitudes approach each other 
because, according to  (41), the recurrence period tends to infinity in this limit and the 
bi-soliton becomes aperiodic.) Now, for the values of u given in table 1 ,  the 
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corresponding recurrence periods, obtained from (41) and (46), depend on u very 
little and are approximately equal to 6.4, which is not all that small compared with 
1/e = 10 for e = 0.1; nevertheless, the perturbation theory is still useful, as the 
results in table 1 indicate. Finally, we recall that, in accordance with asymptotic 
matching, the initial envelope was taken to be a pure bi-soliton in the perturbation 
theory while, on the other hand, the initial condition (45) corresponds to a bi-soliton, 
without a dispersive tail, only for u = 2 (Satsuma & Yajima 1974); on the basis of 
the numerical results reported here, neglecting the dispersive tail in the asymptotic 
theory seems well justified. 
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